Insight towards drought early warning system in Indonesia

Samuel Jonson Sutanto

Abstract


Drought is often categorized as a natural disaster, which receives less attention compared to flood, earthquake, and landslide due to its slow development characteristic. However, the loss due to drought events especially for farmers is comparable with other hazards. To reduce the impact of droughts, a drought early warning system with a lead time of several months ahead is needed. This paper, therefore, exploits the insight of drought early warning system that can be developed in Indonesia. Results show that drought analysis to calculate the forecasted drought severity can be separated into two algorithms. First algorithm is developed to calculate the distribution parameters or CDF values for each month and in each grid cell using historical data that will be used in second algorithm. The second algorithm is built to calculate the drought severity index using forecast data and distribution parameters or CDF values. Outcomes of the analysis are forecasted drought regions and drought index in each province in Indonesia, showing the top and bottom boundaries of the forecast essembled models. Bias correction must be carried out if the hindcast data are available in order to obtain more accurate drought forecasting results. The insight of drought early warning system that is described in this paper hopefully can guide the researchers to develop the drought early warning system in Indonesia.


Keywords


Droughts; early warning system; algorithms; bias correction

References


Alley W. M. 1984. The Palmer drought severity index: Limitations and applications, J. Appl. Meteor., 23, 11001109.

Bloomfield J. P., dan Marchant B. P. 2013. Analysis of groundwater drought building on the standardized precipitation index approach, Hydrol. Earth Syst. Sci., 17, 4769-4787, doi:10.5194/hess-17-4769-2013.

CNN Indonesia. 2015. Kekeringan landa delapan provinsi di Indonesia, Selasa 28 July 2015, diperoleh dari http://www.cnnindonesia.com/nasional/20150728095930-20-68525/kekeringan-landa-delapan-provinsi-di-indonesia/, Diakses pada tanggal 9 February 2017.

Dai A. 2010. Drought under global warming: a review, WIREs Clim. Change, 2, 45-65, doi:10.1002/wcc.81.

Dee D. P., dan Da Silva A. M. 1998. Data assimilation in the presence of forecast bias, Q. J. R. Meteorol. Soc, 124, 269-295.

Dee D. P., Uppala S. M., Simmons A. J., Berrisford P., Poli P., dan rekan-rekan. 2011. The ERA-interim reanalysis: configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137, 553-597.

Djaman K., Balde A. B., Sow A., Muller B., Irmak S., NDiaye M. K., Manneh B., Moukoumbi Y. D., Futakuchi K., dan Saito K. 2015. Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River Valley, J. Hydrol.: Regional Studies, 3, 139-159, doi:10.1016/j.ejrh.2015.02.002.

EurAqua. 2004. Discussion Document: Towards a European Drought Policy.

Van Loon A. F. 2015. Hydrological drought explained, WIREs Water, doi:10.1002/wat2.1085.

Federal Emergency Management Agency (FEMA). 1995. National Mitigation Strategy: Partnerships for building safer communities. Mitigation Directorate, p.2, Washington, DC: Federal Emergency Management Agency, 40.

Hamill T. M., Hagedorn R., dan Whitaker J. S. 2007. Probabilistic Forecast Calibration Using ECMWF and GFS Ensemble Reforecasts, part II: Precipitation, Mon. Wea. Rev., 136, 2620-2632, doi: 10.1175/2007MWR2411.1.

Hisdal H., Tallaksen L. M., Clausen B., Peters E., dan Gustard A. 2004. Hydrological drought characteristics, in: Hydrological Drought. Processes and Estimation Methods for Streamflow and Groundwater, edited by: Tallaksen, L. M. and Van Lanen, H., Developments in Water Science 48, Elsevier Science B.V, 139198.

Hosking J. R. M. 1990. L-Moments: analysis and estimation of distributions using linear combinations of order statistics, J. Royal Statistical Soc. Series B (Methodological), Vol. 52, 105-124.

Jun-Ichi H., Yamanaka M. D., Matsumoto J., Fukao S., Winarso P. A., dan Sribimawati T. 2002. Spatial and temporal variations of the rainy season over Indonesia and their link to ENSO, Journal of the Meteorological Society of Japan, Vol. 80, No. 2, pp. 285-310.

Kallis G. 2008. Droughts, Annu. Rev. Env. Resour., 33:85-118.

McKee T. B., Doesken N. J., dan Kleist J. 1993. The relationship of drought frequency and duration to time scales, Preprints, Eighth Conf. on Applied Climatology. Anaheim, CA, Amer.Meteor. Soc., 179184.

Palmer W. C. 1965. Meteorological droughts. U.S. Department of Commerce, Weather Bureau Research Paper 45, 58 pp.

Persson A. 2001. User guide to ECMWF forecast products, Meteorological Bulletin, M3.2, ECMWF, 2001.

Robine J-M., Cheung S. L. K., Le Roy S., van Oyen H., Griffiths C., Michel J-P., dan Herrmann F. R. 2008. Death toll exceeded 70,000 in Europe during the summer of 2003, Comp. Rendus Biol., 331:171-178, doi:10.1016/j.crvi.2007.12.001.

Shukla S., dan Wood W. 2008. Use of standardized runoff index for characterizing hydrologic drought, Geophys. Res. Lett., 35, L02405, doi:10.1029/2007GL032487.

Sutanto S. J., dan Adidarma W. K. 2015. Analisis kekeringan di beberapa negara Eropa dengan menggunakan data dari model iklim global dan di Indonesia menggunakan data hujan, Jurnal Sumber Daya Air, Vol. 11, No. 1, 1-6.

Sutanto S. J., Hoffmann G., Adidarma W., dan Rckmann T. 2013. Correlation of drought related to ENSO and water isotopes in Indonesia, 4th International Seminar of HATHI, 6-8 September 2013, Yogyakarta.

Taufik M., Torfs P. J. J. F., Uilenhoet R., Jones P. D., Murdiyarso D., dan Van Lanen H. A. J. 2017. Amplification of wildfire area burnt by hydrological drought in the humid tropics, Nature Climate Change, doi:10.1038/NCLIMATE3280.

Van Loon A. F., dan van Lanen H. A. J. 2012. A process-based typology of hydrological drought, Hydrol. Earth Syst. Sci., 16, 1915-1946, doi:10.5194/hess-16-1915-2012.

Vicente-Serrano S. M., Begueria S., dan Lopez-Moreno J. I. 2009. A multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index, Journal of climate., Vol. 23, pages 1696-1718, doi: 10.1175/2009JCLI2909.1.

Wells N., Goddard S., dan Hayes M. J. 2004. A self-calibrating Palmer Drought Severity Index, American Meteorological Society, 2335-2351.

Yevjevich V. 1967. An objective approach to definition and investigations of continental hydrologic droughts, Colorado State University.




DOI: https://doi.org/10.32679/jsda.v13i1.158

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 JURNAL SUMBER DAYA AIR

 
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 

Creative Commons License


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.