The Impact Of Ground Water Dynamics On Carbon Emission Rate Of Tropical Swamp Deposit
Abstract
peat. Scientific methods that used in this study: calculation of thickness/ depth of the peat, peat volume, oxidized peat volume, C dry peat weight and CO2 equivalent. The rate of emission C is calculated on the basis
of emission C and subsidence time. Furthermore, the emission rate C (Mton CO2/ yr) is calculated based on 4 (four) model/ scenario concepts, i.e: actual/ existing condition, plantation, canal blocking and canal blocking with reforestation. This activity was conducted in Sei Ahas, Kapuas, Central Kalimantan and Sungai Buluh, Tanjung Jabung Timur, Jambi. Based on research, it was found that land use change will greatly affect the change of ground water level of peat that contributes to increases the emission of C to the atmosphere.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Couwenberg J, Dommain R, and Joosten H., 2010. Greenhouse gas fluxes from tropical peatlands in South East Asia, Global Change Biology, 16, 17151732.
Couwenberg, J., and Hooijer, A., 2013. Towards robust subsidence-based soil carbon emission factors fro peat soils in south-east Asia, with special reference to oil palm plantations. Mires and Peat, Volume 12 (2013), Article 01, 1-13. ISSN 1819-745X.
Farmer, J., R. Matthews, P. Smith, and J. U. Smith, 2014. The tropical peatland plantation-carbon assessment tool: estimating CO2 emissions from tropical peat soils under plantations. Mitigation and Adaptation Strategies for Global Change 19 (6):863-885.
http://dx.doi.org/10.1007/s11027-013-9517-4
Food and Agiculture Organization of the United Nations, 2014. Towards climate-responsible peatlands management. Mitigation of climate change in agriculture series 9, ISBN 978-92-5-108546-2 (print)E-ISBN 978-92-5-108547-9 (PDF),
www.fao.org/publication, Rome.
Government of Indonesia, World Bank. May 2011. Water management for climate change mitigation and adaptive development in the lowlands WACLIMAD, Technical assistance - Consultancy services, Wasap grant No. Tf 056597, Working paper 5, Lowland regulation: resources base perspective.
Gunarso, P., M. E. Hartoyo, F. Agus, and T. J. Killeen. 2013. Oil palm and land use change in Indonesia, Malaysia and Papua New Guinea.
The Technical Panels of the 2nd Greenhouse Gas Working Group of the Roundtable on Sustainable Palm Oil (RSPO). RSPO, Kuala Lumpur, Malaysia.
Hanafiah K.A. 2005. Dasar-Dasar ilmu tanah. Jakarta. Divisi Buku Perguruan Tinggi. PT. Raja Grafindo Persada.
Hergoualch and Verchot L.V., 2011. Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review. Global biogeochemical cycles Journal. Vol. 25. Issue 2. DOI: 10.1029/2009GB003718.
Hirano, T., K. Kusin, S. Limin, and M. Osaki, 2014. Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland. Global Change Biology 20, 555565, doi: 10.1111/gcb.12296.
Hooijer A, Page S, Canadell J.G, Silvius M, Kwadijk J, Wsten H, and Jauhiainen J, 2010. Current and future CO2 emissions from drained peatlands in Southeast Asia, Biogeosciences, 7, 15051514, doi:10.5194/bg-7-1505-2010.
Hooijer A, Page S, Jauhiainen J, Lee W.A, Lu X.X, Idris A, and Anshari G., 2012. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences, 9, 1053-1071.
Hooijer, A., R. Vernimmen, I. Nasrul, S.E. Page, P. Navratil, G. Applegate, and N. Mawdsley. 2014. Determining subsidence and carbon emission due to biological oxidation in degraded tropical peatlands 15 years after drainage, in relation to land cover and water table depth. A summary of KFCP research results for practitioners, Scientific Report.
Institute for Essential Services Reform (IESR). 2015. A Brief Analysis of Indonesia's Intended Nationally Determined Contribution (INDC), https://www.google.co.id/?
gws_rd=cr&ei=_EZDWcCEBsLxvgSoxIqYCQ#q=intended+nationally+determined+contributions+indonesia (akses, 15 Juni 2017)
Jauhiainen J, Takahashi H, Heikkinen J.E.P, Martikainen P.J, and Vasander H., 2005. Carbon fluxes from a tropical peat swamp forest floor. Global Change Biology, 11, 1788 - 1797.
Jauhiainen J, S. Limin, S. Silvennoinen, and H. Vasander, 2008. Carbon dioxide and methane in drained tropical peat before and after hydrological restoration. Ecology, 89 (12): 3503 - 3514.
Jauhiainen J, Hooijer A, and Page SE., 2012. Carbon dioxide emissions from an Acaciaplantation on peatland in Sumatra, Indonesia. Biogeosciences,9, 617 630.
Kalimantan Forests and Climate Partnership (KFCP). May 2014. Carbon Emission from Drained and Degraded Peatland in Indonesia and Emission Factors for Measureement Reporting and Verification (MRF) of Peatland Greenhouse Gas Emission, Scientific Report. A Summary of KFCP Research Results for Practitioners.
Kementerian Lingkungan Hidup dan Kehutanan. 2015. Inventarisasi Nasional Emisi dan Serapan Gas Rumah Kaca di Hutan dan Lahan Gambut Indonesia, Indonesian National Carbon Accounting System (INCAS), Penerbit Badan Penelitian Pengembangan dan Inovasi, Kementerian Lingkungan Hidup dan Kehutanan, Kampus Badan Penelitian Pengembangan dan Inovasi.
Konecny, K., Ballhorn, U., Navratil, P., Jubanski, J., Page, S. E., Tansey, K., Hooijer, A. A., Vernimmen, R., and Siegert, F., 2016. Variable carbon losses from recurrent fires in drained tropical peatlands, Global Change Biology, 22, 14691480, 2016.
Limin, SH, Saman, TN, Adi Jaya, and S. Alim, 2005. Giving full responsibility for local community as one way for fire management in Central Kalimantan: the TSA concept. Proceeding of The International Symposium and Workshop on Tropical Peatland Restoration and Wise Use of Tropical Peatland: Problems of Biodiversity, Fire, Poverty and Water Management. Palangka Raya.
Moore, S., C. D. Evans, S. E. Page, M. H. Garnett, T. G. Jones, C. Freeman, A. Hooijer, A. J. Witshire, S. H. Limin, and V. Gauci, 2013. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493:660-664. http://dx. doi.org/10.1038/nature11818
Murdiyarso D, Hergoualch K, and Verchot L.V., 2010. Opportunities for reducing greenhouse gas emissions in tropical peatlands, Proceedings of The National Academy Science of he , United States of America, 107, 1965519660.
Page S.E, S. Siegert, J.O. Rieley, H.D.V. Boehm, A. Jaya, and S.H. Limin, 2002. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420:61 65.
Page SE, C.J. Banks, J.O. Rieley, and R. Wust, 2008. Extent, significance and vulnerability of the tropical peatlands carbon pools; past, present, and the future prospect. Proceedings of the 13th International Peat Congress. After wise use the future of peatlands. Vol. 1. Tullamore, Ireland. C. Farrel and Feehan (Eds.). 240-244. International Peat Society.
Page S.E, Hoscilo A, and Jauhiainen J et al., 2009. Ecological restoration of tropical peatlands in Southeast Asia. Ecosystems, 12, 888-905.
Page S.E, Rieley J.O, and Christopher J. Banks, 2011. Global and regional importance of the tropical peatland carbon pool, Global Change Biology, 17, 798-818.
Pronger, J., L. A. Schipper, R. B. Hill, D. I. Campbell, and M. McLeod, 2014. Subsidence rates of drained agricultural peatlands in New Zealand and the relationship with time since drainage. Journal of Environmental Quality 43:1442-1449. http://dx.doi. org/10.2134/jeq2013.12.0505
Sumarga, E., L. Hein, A. Hooijer, and R. Vernimmen, 2016. Hydrological and economic effects of oil palm cultivation in Indonesian peatlands. Journal of Ecology and Society 21(2):52. http://dx.doi.org/10.5751/ES-08490-210252
Sumarga, E., and L. Hein, 2016. Benefits and costs of oil palm expansion in Central Kalimantan, Indonesia, under different policy scenarios. Journal of Regional Environmental Change 16(4):1011-1021.http://dx.doi.org/10.1007/s10113-015-0815-0
Stockwell, C. E., Yokelson, R. J., Kreidenweis, S. M., Robinson, A. L., DeMott, P. J., Sullivan, R. C., Reardon, J., Ryan, K. C., Griffith, D.W. T., and Stevens, L., 2014. Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME 4), Atmos. Chem. Phys., 14, 97279754, doi:10.5194/acp-14-9727-2014.
Stockwell, C. E., Veres, P. R., Williams, J., and Yokelson, R. J., 2015. Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry, Atmos. Chem. Phys., 15, 845865, doi:10.5194/acp-15-845-2015, 2015.
Triadi L.B et. al., 2013. Hydraulic intervention impact on subsidence and carbon emissions in peatland as a disaster mitigation effort (Case study : Sei Ahas - Central Kalimantan), Proceeding of the 4th HATHI International Seminar, 6 8 September 2013, Yogyakarta.
Triadi L. B., and Marpaung, M.F., 2015. Dampak Pengendalian Air Dalam Rangka Mengurangi Kecepatan Laju Subsiden Dan Besaran Emisi Karbon Pada Lahan Gambut Dangkal, Prosiding PIT XXXII HATHI, 9 11 Oktober 2015, Malang.
DOI: https://doi.org/10.32679/jsda.v14i1.288
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 L. Budi Triadi, Fengky F. Adji, Yudi Lasmana
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.