DIRECT COMPARISON OF GLOBAL PRECIPITATION AND ATMOSPHERIC WATER VAPOR ISOTOPOLOGUE FROM SPACE AND MODEL

Samuel J Sutanto

Abstract


Stable isotopes in atmospheric water are important climatic tracers used to derive information on the moisture recycling, paleoclimate from ice cores, cloud physics, troposphere-stratosphere exchange, climate studies, hydrological cycle, etc. Some traditional methods to measure stable isotopes in the atmosphere are labor intensive and spatially limited. Nowadays, measurements of isotopes in the atmosphere are becoming visible using satellites to retrieve the data in one hand and using global climate models on the other hand. Therefore, this study has been carried out to compare the isotopes measurements using both the latest satellites measurements (SCIAMACHY and TES) and some global climate models (GissE, ECHAM, MUGCM) for direct comparison. The results from both satellites measurements and models simulations show that there are some isotope effects such as latitude effect, continental effect, and altitude effect. Interaction between surface and atmosphere can also be seen from the analysis. The stable isotopes comparison from satellites, models and ground observation is in a good agreement (-100 The tropics and -260 The polar regions). The discrepancy of isotope from precipitation and water vapor also agrees well (-60 to -75 in tropics). In addition, a slope analysis from a correlation of total precipitable water and isotope ratio shows that measurements near from the surface is following Rayleigh-type rainout process and measurements in the middle troposphere is influenced by a mixing process.

Keywords


Stable isotopes, atmospheric water, satellites measurements, GCM models, comparison

References


Bony, S., C. Risi, and F. Vimeux. 2008. Influence of convective processes on the isotopic composition (?18O and ?D) of precipitation and water vapor in the tropics: 1. Radiative-convective equilibrium and Tropical OceanGlobal AtmosphereCoupled Ocean-Atmosphere Response Experiment (TOGA-COARE) simulations, J. Geophys. Res., 113, D19305, doi:10.1029/2008JD009942.

Brown, J., I. Simmonds, and D. Noone. 2006. Modeling d18O in tropical precipitation and the surface ocean for present day climate. J. Geophys. Res., 111, D05105, doi:10.1029/2004JD005611.

Brown, D., J. Worden, D. Noone. 2008. Comparison of atmospheric hydrology over convective continental regions using water vapor isotope measurements from space, J. Geophys. Res., Vol. 113, D15124, doi:10.1029/2007JD009676.

Dansgaard, W. 1964. Stable isotopes in precipitation, Tellus, 16, 436-468.

Field, R. D. 2010. Observed and modeled controls on precipitation d18O over Europe: From local temperature to the Northern Annular Mode, J. Geophys. Res., 115, D12101, doi:10.1029/2009JD013370.

Frankenberg, C., K. Yoshimura, T. Warneke, I. Aben, A. Butz, N. Deutscher, D. Griffith, F. Hase, J. Notholt, M. Schneider, H. Schrijver, T. Rckmann. 2009. Dynamic processes governing the isotopic composition of water vapor as observed from space and ground, Science, 325, 13741377, doi:10.1126/science.1173791.

Gedzelman S.D. and R. Arnold.1994. Modeling the isotopic composition of precipitation, J. Geophys, Vol. 99, No. D5, Pages 10,455-10,471.

Herbin, H., D. Hurtmans, S. Turquety, C. Wespes, B. Barret, J. Hadji-Lazaro, C. Clerbaux, and P. F. Coheur. 2007. Global distributions of water vapour isotopologues retrieved from IMG/ADEOS data. Atmos. Chem. Phys., 7, 3957-3968.

Hoffmann, G., M. Werner, M. Heimann. 1998. Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years, J. Geophys. Res., Vol. 103, No. D14, pages 16,871-16,896.

IAEA. 2005. The IAEA moisture isotopes in the biosphere and atmosphere group, the IAEA-MIBA database. Accessible at: http://www-naweb.iaea.org/napc/ih/IHS_resources_isohis.html (Accessed on November, 2011).

Lossow, S., J. Steinwagner, J. Urban, E. Dupuy, C. D. Boone, S. Kellmann, A. Linden, M. Kiefer, U. Grabowski,N. Glatthor, M. Hpfner, T. Rckmann, D. P. Murtagh, K. A. Walker, P. F. Bernath, T. von Clarmann, and G. P. Stiller. 2011. Comparison of HDO measurements from Envisat/MIPAS with observations by Odin/SMR and SCISAT/ACE-FTS, Atmos. Meas. Tech., 4, 18551874, 2011.

Majoube, M. 1971a. Oxygen-18 and deuterium fractionation between water and steam (in French), J. Chim.Phys., 68, 1423-1436.

Majoube, M. 1971b. Fractionation in O-18 between ice and water vapor (in French), J. Chim.Phys., 68, 625-636.

Payne, V.H., D. Noone, A. Dudhia, C. Piccolo and R. G. Grainger. 2007. Global satellite measurements of HDO and implications for understanding the transport of water vapor into the stratosphere. Q. J. R. Meteorol. Soc. 133: 14591471.

Risi, C., S. Bony, F. Vimeux. 2008. Influence of convective processes on the isotopic composition (?18O and ?D) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect, J. Geophys. Res., 113, D19306, doi:10.1029/2008JD009943.

Risi, C., S. Bony,F. Vimeux, J. Jouzel. 2010. Water-stable isotopes in the LMDZ4 general circulation model: Model evaluation for present-day and past climates and application to climatic interpretation of tropical isotopic records, J. Geophys. Res., Vol. 115, D12118, doi:10.1029/2009JD013255.

Schmidt, G. A., G. Hoffmann, D. T. Shindell, and Y. Hu. 2005. Modeling atmospheric stable water isotopes and the potential for constraining cloud processes and stratosphere-troposphere water exchange, J. Geophys. Res., 110, D21314, doi:10.1029/2005JD005790.

Schneider, M., K. Yoshimura, F. Hase, T. Blumenstock. 2010. The ground-based FTIR networks potential for investigating the atmospheric water cycle, Atmos. Chem. Phys., 10, 3427-3442.

Steinwagner, J., M. Milz, T. von Clarmann, N. Glatthor, U. Grabowski, M. Hpfner, G. P. Stiller, and T. Rckmann. 2007. HDO measurement with MIPAS, Atmos. Chem. Phys., 7, 26012615, doi:10.5194/acp-7- 2601-2007.

Steinwagner, J., S. Fueglistaler, G. Stiller, T. von Clarmann, M. Kiefer, P. P. Borsboom, A. van Delden, and T. Rckmann. 2010. Tropical dehydration processes constrained by the seasonality of stratospheric deuterated water, Nat. Geosci., 3, 262266, doi:10.1038/ngeo822.

Uemura, R., Y. Matsui, K. Yoshimura, H. Motoyama, and N. Yoshida. 2008. Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions, J. Geophys. Res., 113, D19114, doi:10.1029/2008JD010209.

Worden, J., K. Bowman, D. Noone, R. Beer, S. Clough, A. Eldering, B. Fisher, A. Goldman, M. Gunson, R. Herman, S. S. Kulawik, M. Lampel, M. Luo, G. Osterman, C. Rinsland, C. Rodgers, S. Sander, M.Shephard, H. Worden. 2006. Tropospheric emission spectrometer observation of the tropospheric HDO/H2O ratio: estimation approach and characterization, J. Geophys. Res., Vol. 111, D16309, doi:10.1029/2005JD006606.

Worden, J., D. Noone, K. Bowman. 2007. Importance of rain evaporation and continental convection in the tropical water cycle, Nature Vol. 445, February 2007.

Yoshimura, K., M. Kanamitsu, D. Noone, and T. Oki. 2008. Historical isotope simulation using Reanalysis atmospheric data, J. Geophys. Res., 113, D19108, doi:10.1029/2008JD010074.

Yoshimura, K., C. Frankenberg, J. Lee, M. Kanamitsu, J. Worden, T. Rckmann. 2011. Comparison of an isotopic atmospheric general circulation model with new quasi-global satellite measurements of water vapor isotopologues, J. Geophys. Res., 116, D19118, doi:10.1029/2011JD016035.

Zakharov, V. I., R. Imasu, K. G. Gribanov, G. Hoffmann, and J. Jouzel. 2004. Latitudinal distribution of the deuterium to hydrogen ratio in the atmosphere water vapor retrieved from IMG/ADEOS data, Geophys. Res. Lett., 31, L12104, doi:10.1029/2004GL019433.




DOI: https://doi.org/10.32679/jsda.v8i2.367

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 JURNAL SUMBER DAYA AIR

Indexed by:
   Sinta Science and Technology IndexCrossref logo              
 
 
 
Sekretariat:
 
Direktorat Bina Teknik Sumber Daya Air, Direktorat Jenderal Sumber Daya Air, Kementerian Pekerjaan Umum dan Perumahan Rakyat